Redeeming
What is redeeming?
Redeeming is the name of the process where the user returns IRON token to the protocol in exchange for collateral. The protocol burns the redeemed IRON token and pays the user approximately $1.00 worth of value in USDC and TITAN token. Redeeming IRON tokens at the current ECR (Effective Collateral Ratio) will produce a varying ratio of collateral (such as USDC or BUSD) and TITAN or STEEL. Redeeming formula: ${\color{DarkOrange} \mathbf{Amount}}_{IRON} =$ $=({\mathbf{Amount}}_{Collateral}\times{\mathbf{Price}}_{Collateral}) +$ $+ ({\color{DarkBlue} \mathbf{Amount}}_{TITAN-or-STEEL}\times{\color{DarkBlue} \mathbf{Price}}_{TITAN-or-STEEL})$ The output ratio of USDC or BUSD and TITAN or STEEL tokens will depend on the current ECR(Effective Collateral Ratio). ${\color{DarkOrange} \mathbf{Amount}}_{Collateral} = \frac{{\color{DarkBlue} {\mathbf{Amount}}}_{IRON}\times{\mathbf{ECR}}}{\mathbf{Price}_{Collateral}}$ ${\color{DarkOrange} \mathbf{Amount}}_{TITAN-or-STEEL} = \frac{{\color{DarkBlue} {\mathbf{Amount}}}_{IRON}\times{(1-\mathbf{ECR})}}{\mathbf{Price}_{TITAN-or-STEEL}}$ The redemption fee is not included in these examples. ### Example 1: Redeeming 100 IRON at 100% ECR( Effective Collateral Ratio). At 100% ECR zero TITAN or STEEL is paid for the redemption. 100% of the output will be USDC or BUSD token. If 1 USDC or BUSD is$1.00, the returned amount of USDC or BUSD will be 100 and 0 TITAN or STEEL:
${\color{DarkOrange} \mathbf{Amount}}_{USDC-or-BUSD} = \frac{{\color{DarkBlue} {\mathbf{100}}}_{IRON}}{\underbrace{\1.00}_{Price\ of\ USDC-orBUSD}}=$
$={\color{DarkOrange}\mathbf{100}}_{USDC-or-BUSD}$

### Example 2: Redeeming 100 IRON at 80% ECR(Effective Collateral Ratio) when 1 USDC or BUDS is $0.95 and 1 TITAN or STEEL is$3.00.

At 80% ECR, the amount received for redemption will consist of 80% USDC or BUSD token and 20% TITAN or STEEL token. In this case redeeming 100 IRON will result in 84.21BUSD and 6.67 TITAN or STEEL.
${\color{DarkOrange} \mathbf{Amount}}_{USDC-or-BUSD} = \frac{100_{IRON}\times \overbrace{80\%}^{ECR}}{\underbrace{\0.95}_{Price\ of\ USDC-or-BUSD}}\approx$
$\approx {\color{DarkOrange} \mathbf{84.21}}_{USDC-or-BUSD}$
${\color{DarkOrange} \mathbf{Amount}}_{TITAN-or-STEEL} = \frac{100_{IRON}\times(1-\overbrace{80\%}^{ECR})}{\underbrace{\3.00}_{Price\ of\ TITAN-or-STEEL}} \approx$
$\approx{\color{DarkOrange} \mathbf{6.67}}_{TITAN-or-STEEL}$